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Introdução

Na maior parte dos textos de Álgebra, o conceito de polinômio é definido invariavel-

mente como uma expressão formal do tipo

a0 + a1 · x+ a2 · x2 + · · ·+ an · xn (1)

onde cada ai, i = 1, 2, · · ·n é um elemento de algum anel A.

No entanto, com um olhar mais atento e cŕıtico percebemos que uma tal expressão

envolve operações entre elementos deste anel e um objeto, a priore, não definido: o

śımbolo x. Quem é este śımbolo não identificado? Qual é a natureza de x? É um

elemento do anel de coeficientes A? Vejamos:

Observe que o papel de x em (1) é o mesmo de π na expressão

2− 3 · π + 7 · π2 − 5 · π3,

onde os coeficientes 2,−3, 7 e −5 das potências de π estão em Z. Mas tal expressão não

tem sentido em Z. Portanto, não é correto dizer que x representa, necessariamente, um

elemento do anel de coeficientes.

Seria x um vetor e o termo a1 ·x o produto por escalar de um espaço vetorial? Observe

que isto gera um incômodo, uma vez que aparecem as potências de x na expressão (1)

e produto de vetores não está definido em espaços vetoriais. Isso descarta a natureza

vetorial do objeto x.

O que a expressão (1) sugere é a existência de uma estrutura algébrica “maior”que

contém os coeficientes ai e um objeto especial não pertencente ao anel de coeficientes.

Definir polinômio como uma expressão formal, isto é, sem valor prático, de natureza
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abstrata, deixa nosso conhecimento matemático com um pequeno vazio, algo que certa-

mente perturba as mentes dos estudantes mais exigentes.

O objetivo deste trabalho é introduzir uma definição precisa do conceito de polinômios

com coeficientes num anel e responder a pergunta: quem é o x da questão dos polinômio?

Também definiremos uma adição e uma multiplicação no conjunto A[x], formado por to-

dos dos polinômios com coeficientes em anel A e mostraremos que tal conjunto é um

anel. Finalmente, provaremos que se A é um corpo, então vale o Algoritmo da Divisão de

Euclides em A[x] e mostraremos a crucial diferença entre polinômios e funções polinomi-

ais. Iremos mostrar que tais conceitos são totalmente distintos. Finalizamos o trabalho

apresentando algumas aplicações deste algoritmo para a obtenção de resultados realmente

curiosos sobre polinômios.
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Caṕıtulo 1

Anéis e Domı́nios

1.1 Definições e Exemplos

No primeiro caṕıtulo, vamos introduzir alguns conceitos e resultados que serão necessários

para o desenvolvimento do próximo caṕıtulo, que é o enfoque principal deste mini-curso.

O leitor que já cursou um curso básico de estruturas algébricas pode avançar este caṕıtulo.

Começamos esta seção definindo o conceito de anel.

Definição 1.1 Um anel é um conjunto não vazio A munido com duas operações inter-

nas denotadas por + (chamada adição) e · (chamada multiplicação) que satisfazem as

seguintes condições para quaisquer a, b, c ∈ A:

(A.1) A adição é associativa, i.é, (a+ b) + c = a+ (b+ c);

(A.2) A adição é comutativa, i.é, a+ b = b+ a;

(A.3) Existe um elemento neutro da adição, i.é, existe um elemento em A, denotado por

0A, tal que 0A + a = a+ 0A = a, para todo a ∈ A;

(A.4) Todo elemento de A possui um simétrico com respeito a adição, i.é, para todo a ∈ A,

existe um elemento em a′ ∈ A tal que a+ a′ = a′ + a = 0A;
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(M.1) A multiplicação é associativa, i.é, (a · b) · c = a · (b · c);

(M.2) A multiplicação é distributiva em relação a adição, i.é, a · (b+ c) = (a · b) + (a · c)

e (b+ c) · a = (b · a) + (c · a);

Quando um conjunto A é um anel, dizemos também que A possui ou admite uma

estrutura algébrica de anel.

Muitas vezes a palavra produto é usada para disignar a operação de multiplicação,

assim como a palavra soma é usada para disigar a operação de adição. Isto não é correto.

A adição e a multiplicação são as operações internas de um conjunto. O resultado da

adição de dois elementos é chamado soma, enquanto que o resultado da mulplicação de

dois elementos é chamado de produto.

A condição (A.3) da definição anterior, garante a existência de um elemento neutro

da adição. Se 0A e 0′A forem dois elementos neutros da adição de um anel A, então, em

particular, 0A = 0A +0′A = 0′A. Isto mostra que o elemento neutro da adição é único num

anel. Tal elemento é chamado zero do anel A e sempre que não houver possibilidade de

confusão, ele será denotado simplesmente por 0.

A condição (A.4) da Definição 1.1 garante que todo elemento a de um anel A admite

pelo menos um elemento simétrico em relação a adição. Suponha que a′ ∈ A e a′′ ∈ A

sejam simétricos de a ∈ A em relação a adição. Temos:

a′ = a′ + 0 por (A.3)

= a′ + (a+ a′′) pois a′′ é simétrico de a

= (a′ + a) + a′′ por (A.1)

= 0 + a′′ pois a′ é o simétrico de a

= a′′ por (A.3).

Isto significa que o simétrico a′ de a em relação a adição é único e será denotado por −a.

Assim, a+ (−a) = (−a) + a = 0A.

Antes de darmos exemplos, vamos definir mais alguns conceitos importantes.

Se a multiplicação · em um anel A for comutativa, i.é, se a · b = b · a, para quaisquer

a, b ∈ A, diremos que A é um anel comutativo.
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Pode acontecer algumas vezes, as vezes não, de existir um elemento u num anel A

tal que a · u = u · a = a para todo a ∈ A. Quando isso acontece, diremos que o anel

A é um anel com unidade. Em outras palavras, um anel com unidade é um anel que

possui um elemento neutro para a multiplicação. De maneira análoga ao que foi feito

para o elemento neutro da adição, mostra-se que, quando existe, o elemento neutro da

multiplicação de um anel é único e será denotado por 1A (ou simplesmente 1 quando não

houver possibilidade de confusão). Tal elemento é chamado a unidade de A.

NOTAÇÃO: Se A é um anel com operação de multiplicação · e a, b ∈ A, escrevere-

mos muitas vezes ab no lugar de a · b.

Sejam A um anel e a, b ∈ A. Como −b ∈ A, definimos a− b por a− b = a+(−b). Isto

induz uma nova operação sobre A, chamada subtração e denotada por −. O resultado

da subtração de dois elementos é chamada de diferença. Também, se n é um número

inteiro positivo, definimos an como sendo an = a · a · · · · · a︸ ︷︷ ︸
n vezes

. Quando A tem unidade 1,

definimos a0 = 1.

Vamos dar uma pequena pausa nas definições para darmos alguns exemplos. Eles nos

motivarão a definir outros tipos de aneis “especiais”.

Exemplo 1.2 O conjunto dos números inteiros Z é um anel comutativo com unidade

com a adição + e multiplicação · usuais.

Exemplo 1.3 O conjunto dos números inteiros pares, denotado por 2Z, é um anel comu-

tativo com a adição + e multiplicação · usuais. Porém, 2Z não é um anel com unidade.

Exemplo 1.4 O conjunto dos números naturais com a adição e multiplicação usuais N

não é um anel pois em geral a propriedade (A.4) da Definição 1.1 não é válida. De

fato, todo número natural não nulo não possui um simétrico com respeito a adição.

Exemplo 1.5 O conjunto dos números racionais Q, bem como o conjunto dos números

reais R com as operações usuais de adição e multiplicação são anéis comutativos com

unidade.

Exemplo 1.6 Considere o conjunto M2(R) de todas as matrizes 2 × 2 com entradas

reais, i.é,
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M2(R) =


 a11 a12

a21 a22

 : a11, a12, a21, a22 ∈ R

.

Definimos a adição e multiplicação de duas matrizes

 a11 a12

a21 a22

 e

 b11 b12

b21 b22


pertencentes a M2(R) da seguinte forma: a11 a12

a21 a22

⊕
 b11 b12

b21 b22

 =

 a11 + b11 a12 + b12

a21 + b21 a22 + b22


e a11 a12

a21 a22

�
 b11 b12

b21 b22

 =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22


Fica como exerćıcio para o leitor provar que as operações de adição ⊕ e multiplicação

� definidas acima dão ao conjunto M2(R) uma estrutura de anel com unidade. Observe

que o elemento neutro da adição é a matriz

 0 0

0 0

, chamada matriz nula, e a matriz 1 0

0 1

 é a unidade de M2(R), chamada matriz identidade.

Considere agora as matrizes

 1 1

0 0

 e

 1 1

0 1

 de M2(R). Temos:

 1 1

0 0

 �

 1 1

0 1

 =

 1 2

0 0


e  1 1

0 1

 �

 1 1

0 0

 =

 1 1

0 0

.

Portanto, M2(R) com as operações ⊕ e � definidas acima é um anel com unidade, mas

não é comutativo. Fica como exerćıcio generalizar o exemplo anterior para o conjunto

Mn(R) de todas as matrizes n× n com entradas reais.

Exemplo 1.7 Considere o conjunto Z[
√

3] = {a + b
√

3 | a, b ∈ Z}. Para quaisquer

elementos a+ b
√

3, c+ d
√

3 ∈ Z[
√

3] definimos:
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(1) (a+ b
√

3)⊕ (c+ d
√

3) = (a+ c) + (b+ d)
√

3

(2) (a+ b
√

3)� (c+ d
√

3) = (ac+ 3bd) + (ad+ bc)
√

3

Não é dif́ıcil (é apenas trabalhoso) mostrar que o conjunto Z[
√

3] munido com as operações

de adição ⊕ e multiplicação � definidas acima é um anel comutativo com unidade. O

zero deste anel é o elemento 0 + 0
√

3, enquanto que a unidade é o elemento 1 + 0
√

3.

O leitor pode se inspirar no que acabamos de fazer para mostrar que para qualquer

número inteiro m, o conjunto Z[
√
m] admite uma estrutura algébrica de anel comutativo

com unidade. A adição e uma multiplicação em Z[
√
m] são definidas de maneira análoga

ao que foi feito acima.

Observe que em Z, 2Z, Q, R e Z[
√

3] apresentados acima, a multiplicação de quaisquer

dois elementos não nulos é sempre um elemento não nulo. O mesmo não ocorre com

M2(R), pois  1 0

0 0

 �

 0 0

0 1

 =

 0 0

0 0


Para destacar a diferença entre tais anéis, temos a seguinte definição.

Definição 1.8 Um anel comutativo com unidade A é dito ser um domı́nio de integridade

ou domı́nio (simplesmente) se vale a seguinte sentença:

∀a, b ∈ A, se a 6= 0 e b 6= 0 então a · b 6= 0.

Logicamente, isto é equivalente a dizer que se a e b são elementos de A tais que a · b = 0

então a = 0 ou b = 0.

Conforme vimos antes, os anéis Z, 2Z, Q, R e Z[
√

3] são domı́nos de integridade

enquanto que M2(R) não é domı́nio de integridade. Veremos adiante mais exemplos de

anéis que não são domı́nios de integridade.

Note que se x 6= 0 é um elemento em um domı́nio de integridade D e y, z ∈ D, então

x · y = x · z =⇒ y = z (verifique!)
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Tal propriedade é chamada lei do corte à esquerda. Analogamente temos a lei do corte à

direita.

Exemplo 1.9 Os conjuntos dos números racionais Q e dos números reais R são anéis

comutativos com unidade com as operações de usuais de adição e multiplicação. Note

que além disso, todo número racional (real) não nulo admite um inverso multiplicativo,

i.é, para todo x ∈ Q − {0}, (x ∈ R − {0}) existe y ∈ Q (y ∈ R) tal que xy = 1. Anéis

que satizfazem esta última propriedade recebem um nome especial.

Definição 1.10 Um anel com unidade (não necessariamente comutativo) A é dito ser

um anel com divisão se todo elemento não nulo de A admite um inverso multiplicativo,

i.é, para todo x ∈ A− {0}, existe y ∈ A tal que x · y = 1A.

Pode-se mostrar que num anel com divisão A o inverso multiplicativo de 0 6= x ∈ A

é único. Tal elemento é denotado por x−1.

Um anel com divisão e comutativo é chamado de corpo. Em outras palavras, um

corpo é um anel comutativo com unidade cujos elementos não nulos admitem um inverso

multiplicativo.

Os anéis Q e R são corpos. O conjunto dos números complexos

C = {a+ bi : a, b ∈ R}

com adição e multiplicação usuais é um corpo. O inverso de um elemento não nulo a+ bi

é o número complexo
a

a2 + b2
− b

a2 + b2
i.

Outros corpos muito importante na matemática são constrúıdos da seguinte forma:

considere o conjunto Q[
√
p] = {a + b

√
p | a, b ∈ Q}, onde p é um número inteiro primo.

Para quaisquer elementos a+ b
√
p, c+ d

√
p ∈ Q[

√
p] definimos:

(1) (a+ b
√
p)⊕ (c+ d

√
p) = (a+ c) + (b+ d)

√
p

(2) (a+ b
√
p)� (c+ d

√
p) = (ac+ pbd) + (ad+ bc)

√
p

O conjunto Q[
√
p] com as operações acima é um corpo. O inverso de a+ b

√
p ∈ Q[

√
p] é

o elemento
a

a2 − pb2
− b

a2 − pb2
√
p ∈ Q[

√
p]
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1.2 Subanéis e Homomorfismos

Esta será uma breve seção para introduzirmos dois conceitos que necessitamos, mas

que serão mencinados minimamente no próximo caṕıtulo. Para maiores detalhes, o leitor

poderá procurar em ??.

Sejam A um anel com adição + e multiplicação · e B um subconjunto não vazio de

A. Se B com estas operações for um anel, diremos que B é um subanel de A.

Vamos agora dar um critério para decidir se um subconjunto de um anel é ou não um

subanel.

Proposição 1.11 Sejam A um anel com adição + e multiplicação · e B um subconjunto

de A. Então, B é um subanel de A se e somente se as seguintes condições são verificadas:

(i) 0 ∈ B;

(ii) x, y ∈ B =⇒ x− y ∈ B;

(iii) x, y ∈ B =⇒ x · y ∈ B.

A demonstração é relativamente fácil e por isso será deixada a cargo do leitor.

Vamos usar a notação B ≤ A para indicar que B é um subanel de A.

Exemplo 1.12 Conforme vimos na seção anterior temos os seguintes exemplos:

(i) 2Z ≤ Z ≤ Q ≤ R ≤ R ≤ C;

(ii) Z ≤ Z[
√
p] ≤ Q[

√
p] ≤ R.

Sejam A e B dois anéis. Por comodidade vamso denotar as oprerações destes dois

anéis por + e · simplesmente. Uma função f : A −→ B é dita ser um homomorfismo de

A em B se F satisfaz as seguintes condições:

(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ A;

(ii) f(x · y) = f(x) · f(y), ∀x, y ∈ A.
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Quando um homomorfismo f de um anel A em um anel B é injetor (resp. sobrejetor),

diremos que f é um monomorfismo (resp. epimorfismo). Quando f é um monomorfismo,

podemos “identificar”cada elemento a ∈ A com f(a) ∈ B e, usando um abuso de lin-

guagem, podemos considerar A contido em B. Se f é um homomorfismo bijetor (ou seja,

inverśıvel), diremos que f é um isomorfismo.

1.3 O Anel Zm

Fixe um número inteiro m e considere a relação R definida sobre Z da seginte maneira:

∀ a, b ∈ Z, aRb ⇐⇒ m|a− b

⇐⇒ a− b é múltiplo de m

⇐⇒ a− b = km, para algum k ∈ Z

⇐⇒ a = km+ b, para algum k ∈ Z.

Não é muito dif́ıcil de mostrar que R é uma relação de equivalência. Assim, temos

as classes de equivalência módulo R. Se n ∈ Z, sua classe de equivalência módulo R,

denotada por n̄, é dada por

n̄ = {a ∈ Z | aRn} = {a ∈ Z | a = km+ n, k ∈ Z} = {km+ n | k ∈ Z}.

Em outras palavras, n̄ é o conjunto de todos os números inteiros a cujo resto da divisão

de a por m é n. Disso resulta que as únicas classes de equivalência módulo R são:

0̄ = {a ∈ Z | aR0} = {a ∈ Z | a = km, k ∈ Z} = {km | k ∈ Z}.

1̄ = {a ∈ Z | aR1} = {a ∈ Z | a = km+ 1, k ∈ Z} = {km+ 1 | k ∈ Z}.

2̄ = {a ∈ Z | aR2} = {a ∈ Z | a = km+ 2, k ∈ Z} = {km+ 2 | k ∈ Z}.
...

m− 1 = {a ∈ Z | aR(m−1)} = {a ∈ Z | a = km+(m−1), k ∈ Z} = {km+(m−1) | k ∈ Z}

O conjunto quociente de Z por R é o conjunto de todas as classes de equivalência

módulo R. Tal conjunto é denotado por Zm. Simbolicamente, Zm = {0̄, 1̄, · · · ,m− 1}.

Em Zm podemos definir uma operação interna de adição ⊕ e uma operação interna

de multiplicação � da seguinte forma:
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(1) ∀ ī, j̄ ∈ Zm, ī⊕ j̄ = i+ j = k̄, onde k é o resto da divisão de i+ j por m.

(2) ∀ ī, j̄ ∈ Zm, ī� j̄ = i · j = k̄, onde k é o resto da divisão de i · j por m.

Um bom exerćıcio é mostrar que estas operações estão bem definidas e que Zm com

tais operações é um anel comutativo com unidade.

Para facilitar a escrita, de agora em diante escreveremos simplesmente ī+ j̄ no lugar

de ī⊕ j̄ e ī · j̄ no lugar de ī� j̄.

Observamos que para m ∈ Z fixado, Zm é um anel finito que tem exatamente m

elementos. O Z6, por exemplo, tem 6 elementos. São eles: 0̄, 1̄, 2̄, 3̄, 4̄ e 5̄. Observe que

neste caso, 2̄ · 3̄ = 6̄ = 0̄. Isto mostra que Z6 não um domı́nio de integridade e portanto

não é um corpo. Deixamos para o leitor mostrar que Zm é um corpo se e somente se m

é um número primo.

Embora pareça que estes anéis estejam muito distantes da nossa vida cotidiana, um

olhar um pouco mais cŕıtico nos leva a conclusão do contrário. De fato, imagine um

enfermeira que começa seu turno as 8 horas da noite, ou melhor, as 20 horas e que tem

uma jornada de trabalho de 6 horas. Que horas esta enfermeira para de trabalhar? As

26 horas, ou as 2 horas? A resposta certa é 2 horas (da madrugada se preferir). Isto

ocorre porque um dia tem 24 horas. As horas terrestres são: a hora 0, a hora 1, a hora 2,

· · ·, a hora 23. Assim sendo, nenhum relógico digital do mundo é capaz de contar a hora

24. Portanto, a grosso modo, podemos pensar que as horas do dia terrestre funcionam

mais ou menos como o Z24.
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Caṕıtulo 2

Polinômios em uma Indeterminada

2.1 Introdução

Neste caṕıtulo vamos introduzir uma definição precisa do conceito de polinômios em

uma indeterminada com coeficientes em um anel e responder a pergunta: quem é o x da

questão dos polinômio? Também definiremos uma adição e uma multiplicação no con-

junto A[x], formado por todos dos polinômios com coeficientes em anel A, e mostraremos

que tal conjunto é um anel. Finalmente, provaremos que se A é um corpo, então vale

o Algoritmo da Divisão de Euclides em A[x] e mostraremos a crucial diferença entre

polinômios e funções polinomiais. Finalizamos o caṕıtulo dando algumas aplicações do

Algoritmo da Divisão de Euclides.

2.2 Sequências e Polinômios

Seja A um conjunto qualquer. Uma sequência em A é uma função a : N −→ A, ou

seja, uma sequência nada mais é do que um função a cujo domı́nio é N e o contra-domı́nio

é A. Afim de simplificarmos a notação, para todo n ∈ N, denotaremos a imagem de n pela
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função a por an e não por a(n) como estamos acostumados. É comum representarmos

uma sequência em A por (an)n∈N, ou simplesmente (an), ou ainda (a0, a1, a2, a3, · · ·).

Numa sequência (a0, a1, a2, a3, · · ·), cada termo ai é chamado de coeficiente. O ı́ndice i

indica a posição do coeficiente na sequência.

Seja A um anel com elemento neutro da adição 0. Dada uma sequência p = (an)n∈N

em A, definimos o suporte de a como sendo o seguinte conjunto:

sup(p) = {i ∈ N : ai 6= 0}

Observe que sup(p) é um subconjunto de N e não do anel A.

A sequência (0, 0, 0, 0, · · ·) cujos coeficientes são todos nulos tem suporte vazio. Tal

sequência é chamada sequência nula.

De agora em diante, A denotará um anel comutativo com unidade 1.

Definição 2.1 Seja A um anel comutativo com unidade 1. Um polinômio numa indeter-

minada sobre A, ou simplesmente um polinômio sobre A, é uma sequência (an)n∈N cujo

suporte é finito.

Em outras palavras, um polinômio em uma indeterminada sobre A é uma sequência

(an)n∈N em A que tem apenas um número finito de coeficientes são não nulos. Assim, a

partir de um certo ı́ndice m teremos am+1 = am+2 = · · · = 0.

Por simplificação, muitas vezes diremos simplesmente um polinômio sobre A ou ainda

um polinômio com coeficientes em A para nos referirmos a um polinômio numa indeter-

minada sobre A

Note que a sequência nula é um polinômio por ter suporte vazio, portanto finito. Este

polinômio é chamado polinômio nulo. Como A tem 1, a sequência (1, 0, 0, · · ·) também

é um polinômio cujo suporte é {0}. Já as sequências (0, 1, 0, · · ·) e (1, 1, 0, · · ·) também

são polinômios cujos suportes são, respectivamente, iguais a {1} e {0, 1}.

Dizemos que dois polinômios p = (a0, a1, a2, · · ·) e q = (b0, b1, b2, · · ·) sobre A são

iguais se e somente se ai = bi em A, para todo i ∈ N.

Dado um polinômio não nulo p = (a0, a1, a2, · · ·) sobre A, definimos o grau de p como

sendo o maior número natural pertencente a sup(p). Denotamos o grau de um polinômio

não nulo p por gr(p). Como o polinômio nulo tem suporte vazio, seu grau não é definido.
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Note que gr(1, 0, 0, · · ·) = 0, enquanto que gr(0, 1, · · ·) = gr(1, 1, 0, · · ·) = 1.

Note também que se p = (a0, a1, a2, · · ·) é um polinômio sobre A e gr(p) = n, então

am = 0 para todo m > gr(p).

Um polinômio de grau zero é chamado polinômio constante. Explicitamente, os

polinômios constantes são da forma (a0, 0, 0, · · ·), onde a0 ∈ A.

Se p = (a0, a1, a2, · · ·) é um polinômio sobre A com gr(p) = n, o coeficiente an é

chamado coeficiente ĺıder de p. Um polinômio é dito ser mônico se seu coeficiente ĺıder

igual a 1.

Seja A o conjunto de todos os polinômios em uma ideterminada sobre A. Vamos

definir uma operação de soma ⊕ e um operação de multiplicação � no conjunto A.

Sejam p = (a0, a1, a2, · · ·) e q = (b0, b1, b2, · · ·) dois polinômios de A. Definimos

p⊕ q = (a0 + b0, a1 + b1, a2 + b2, · · · , ak + bk, · · ·)

e

p� q = (c0, c1, c2, · · · , ck, · · ·),

onde



c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
...

ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ ak−1b1 + akb0 =
k∑

i=0

aibk−i

...

É fácil ver que sup(p ⊕ q) ⊆ sup(p) ∪ sup(q), e portanto sup(p ⊕ q) é finito. Logo,

p ⊕ q ∈ A. Para mostrar que p � q ∈ A, suponha que gr(p) = n e gr(q) = m. Se

k > n+m, então k > n, k > m e k − n > m. Disso segue que an+1 = an+2 = · · · ak = 0

e bk = bk−1 = · · · = bk−n = 0, e portanto

ck = a0bk + a1bk−1 + · · ·+ anbk−n︸ ︷︷ ︸
=0

+ an+1bk−n−1 + · · ·+ akb0︸ ︷︷ ︸
=0

= 0.

Isto mostra que para todo k > n+m, ck = 0, ou seja, sup(p� q) é finito.
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Deste modo, p ⊕ p e p � q são elementos de A, i.é, ⊕ e � são operações internas de

A, chamadas adição e multiplicação de polinômios, respectivamente.

Como a adição + em A é associativa e comutativa, segue facilmente que a adição de

polinômios também é associativa e comutativa. O polinômio nulo é o elemento neutro da

adição, enquanto que o simétrico aditivo do polinômio p = (a0, a1, a2, · · ·) é o polinômio

(−a0,−a1,−a2, · · ·) denotado por −p.

Para a multiplicação temos o polinômio (1, 0, 0, · · ·) como sendo o elemento neutro.

Além disso, a comutatividade da multiplicação segue diretamente da comutatividade da

multiplicação em A e da maneira como foi definida multiplicação de polinômios acima.

A associatividade da multiplicação e a distributividade da mesma em relação a adição

são um pouco mais sofisticadas e deixamos como exerćıcio para o leitor.

Logo, conclúımos que o conjuntoAmunido com as operações de adição e multiplicação

definidas acima é um anel comutativo com unidade, chamado anel de polinômios em uma

indeterminada com coeficintes A ou, por simplificação, anel de polinômios sobre A.

Proposição 2.2 Seja A um anel comutativo com unidade 1 e A o anel de polinômios

sobre A. O conjunto A0 = {(a0, 0, 0, · · ·) : a0 ∈ A} é um subanel de A isomorfo a A.

Demonstração: Para provarmos este resultado, vamos usar a Proposição 1.11. Clara-

mente, (0, 0, 0, · · ·) ∈ A0. Agora, sejam p = (a0, 0, 0, · · ·) e q = (b0, 0, 0, · · ·) elemen-

tos de A0. Neste caso, temos ai = bi = 0 para todo i ∈ N, i > 0. Note que,

−q = (−b0, 0, 0, · · ·) ∈ A0 e p⊕(−q) = (a0+(−b0), 0+0, 0+0, · · ·) = (a0−b0, 0, 0, · · ·) ∈ A0.

Além disso, p� q = (c0, c1, c2, · · ·) onde



c0 = a0 · b0
c1 = a0b1 + a1b0 = a0 · 0 + 0 · b0 = 0

c2 = a0b2 + a1b1 + a2b0 = a0 · 0 + 0 · 0 + 0 · b0 = 0
...

ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ ak−1b1 + akb0 = a0 · 0 + 0 · 0 + · · ·+ 0 · b0 = 0
...

Portanto, p� q = (a0b0, 0, 0, · · ·) ∈ A0 o que mostra que A0 é um subanel de A.
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Seja ϕ : A −→ A0 definida por ϕ(a) = (a, 0, 0, · · ·), para todo a ∈ A. É fácil ver

que ϕ é um homomorfismo de anéis cuja inversa é a função ψ : A0 −→ A definida por

ψ(a0, 0, 0, · · ·) = a0, para todo (a0, 0, 0, · · ·) ∈ A0. Logo, ϕ é um isomorfismo de anéis. 2

A proposição anterior diz que o conjunto dos polinômios constantes sobre A é subanel

de A que é isomorfo ao anel A. Isto nos será bastante útil mais adiante.

A seguintes propriedades dos polinômios também são notáveis.

Lema 2.3 Seja A um anel comutativo com unidade 1 e A o anel de polinômios sobre A.

Então, as seguintes identidades são válidas:

(i) (a0, a1, a2, · · ·)� (0, 1, 0, 0, · · ·) = (0, a0, a1, a2, · · ·), ∀ ai ∈ A, i ∈ N.

(ii) (a, 0, 0, · · ·)� (0, 1, 0, · · ·)n = (0, 0, · · · , a︸︷︷︸
pos. n

, 0, · · ·),∀a ∈ A.

Demonstração: (i) Para simplificarmos a notação, sejam p = (a0, a1, a2, · · ·) e

q = (b0, b1, b2, · · ·) tal que b1 = 1 e bi = 0 para todo i ∈ N, i 6= 1. Então, p � q =

(c0, c1, c2, · · ·), onde



c0 = a0b0 = a00 = 0

c1 = a0b1 + a1b0 = a01 + a10 = a0

c2 = a0b2 + a1b1 + a2b0 = a00 + a11 + a20 = a1

...

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 = a00 + a10 + · · ·+ ak−11 + ak0 = ak−1

...

Logo, p� q = (a0, a1, a2, · · ·)� (0, 1, 0, 0, · · ·) = (0, a0, a1, · · ·).

(ii) Faremos a prova por indução sobre n.

Como (0, 1, 0, · · ·)0 = (1, 0, 0, · · ·), temos

(a, 0, 0, · · ·)� (0, 1, 0, · · ·)0 = (a, 0, 0, · · ·)� (1, 0, 0, · · ·) = (a, 0, 0, · · ·)

e portanto a a afirmação vale para n = 0.

Suponha que (a, 0, 0, · · ·)� (0, 1, 0, · · ·)n = (0, 0, · · · , a︸︷︷︸
pos. n

, 0, · · ·) para algum n ∈ N.
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Então,

(a, 0, 0, · · ·)� (0, 1, 0, · · ·)n+1 = (a, 0, 0, · · ·)� (0, 1, 0, · · ·)n � (0, 1, 0, 0 · · ·)

= (0, 0, · · · , a︸︷︷︸
pos. n

, 0, · · ·)� (0, 1, 0, 0, · · ·)

= (0, 0, · · · , a︸︷︷︸
pos. n+1

, 0, · · ·), pelo item (ii)

2

Considere um polinômio p = (a0, a1, a2, a3, · · · , an, 0, 0, · · ·) com coeficientes em um

anel comutativo com unidade A, como an 6= 0. Então, pelo item (ii) do lema anterior,

temos:

p = (a0, 0, 0, · · ·)⊕ (0, a1, 0, · · ·)⊕ (0, 0, a2, 0, · · ·)⊕ · · · ⊕ (0, 0, · · · , 0, an, 0 · · ·)

= (a0, 0, 0, · · ·)� (0, 1, 0, · · ·)0 ⊕ [(a1, 0, 0, · · ·)� (0, 1, 0, 0, · · ·)1]

⊕[(a2, 0, 0, · · ·)� (0, 1, 0, 0, · · ·)2]⊕ [(a3, 0, 0, · · ·)� (0, 1, 0, 0, · · ·)3]

⊕ · · · ⊕ [(an, 0, 0, · · ·)� (0, 1, 0, 0, · · ·)n]

Observe que pela Proposição 2.2, o conjunto dos polinômios constantes sobre A é

subanel de A que é isomorfo ao anel A. Assim, podemos identificar ai com (ai, 0, 0, · · ·)

e portanto, podemos escrever ai no lugar de (ai, 0, 0, · · ·), para todo i ∈ N. Deste modo,

o śımbolo ai será usado para designar duas coisas distintas: o elemento ai ∈ A, quando

este for o caso, e o elemento (ai, 0, 0, · · ·) ∈ A, quando estivermos estudando polinômios.

Logo, o polinômio p = (a0, a1, a2, a3, · · · , an, 0, 0, · · ·) será escrito como

p = a0 � (0, 1, 0, · · ·)0 ⊕ [a1 � (0, 1, 0, 0, · · ·)1]⊕ [a2 � (0, 1, 0, 0, · · ·)2]

⊕[a3 � (0, 1, 0, 0, · · ·)3]⊕ · · · ⊕ [an � (0, 1, 0, 0, · · ·)n].

Por razões práticas, vamos denotar o polinômio (0, 1, 0, 0, · · ·) pelo śımbolo x. Então,

como x0 = 1 e x1 = x, podemos escrever qualquer polinômio p = (a0, a1, a2, a3, · · · , an, 0, 0, · · ·)

da seguinte forma:

p = a0 ⊕ (a1 � x)⊕ (a2 � x2)⊕ (a3 � x3)⊕ · · · ⊕ (an � xn).
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Para simplificar ainda mais a notação, vamos escrever + no lugar de ⊕ e · no lugar

de �.

Logo, com todas as convensões que acabamos de propor, todo polinômio

p = (a0, a1, a2, a3, · · · , an, 0, 0, · · ·) é igual a soma a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n,

onde aix
i denota ai · xi. Deste modo,

A = {a0 + a1x+ a2x
2 + · · ·+ anx

n | ai ∈ A e n ∈ N} =

{
n∑

i=1

aix
i | ai ∈ A e n ∈ N

}
,

e as operações deste deste anel são aquelas apresentadas anteriormente e que são sim-

plesmente aquelas que estamos (ou deveriamos estar) acostumados.

A partir de agora, o anel de polinômios em uma indeterminada sobre um anel comu-

tativo com unidade A será denotado por A[x]. Um elemento de A[x] será denotado por

f(x), ou p(x), ou q(x), etc. O polinômio nulo é o polinômio 0 + 0x+ 0x2 + · · ·+ 0xn que

será denotado simplesmente por 0. A unidade de A[x] é o polinômio 1+0x+0x2+· · ·+0xn

que é denotado por 1.

Observação 2.4 Com toda construção que fizemos acima, fica explicado quem é o x que

aparece no anel de polinômios.

Vamos agora enunciar as definições que vimos anteriomente sobre polinômios, mas

usando a nova notação.

Definição 2.5 Sejam A um anel comutativo com unidade e p(x) = a0 + a1x + a2x
2 +

· · ·+anx
n ∈ A[x], com an 6= 0. Cada ai é chamado coeficiente de p(x). O número natural

n é chamado grau de p(x). O coeficiente an é chamado coeficiente lider de p(x). Quando

o coeficiente ĺıder é 1, o polinômio é dito mônico.

Proposição 2.6 Sejam A um domı́nio e p(x) = a0 + a1x + a2x
2 + · · · + anx

n,

q(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m ∈ A[x] tais que an 6= 0 e bm 6= 0, i.é, gr(p(x) = n e

gr(q(x) = m. Então:

(i) gr(p(x) + q(x)) ≤ max{n,m}, sempre que gr(p(x) + q(x)) 6= 0.

(ii) gr(p(x)q(x)) = m+ n = gr(p(x)) + gr(q(x))
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Demonstração: Faremos somente a prova do item (ii). Como sabemos, p(x)q(x) =

c0 + c1x+ c2x
2 + · · ·+ cn+mx

n+m, onde



c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
...

cn+m = a0bn+m + a1bn+m−1 + · · ·+ anbm + an+1bm−1 + · · ·+ an+m−1b1 + an+mb0

Note que cn+m = anbm e = anbm 6= 0, pois A é um domı́nio. Logo, gr(p(x)q(x)) =

m+ n = gr(p(x)) + gr(q(x)). 2

2.3 Polinômios e Funções Polinomiais

Um erro grave cometido por muitos estudantes da área de ciências exatas é pensar que

não há diferença entre os conceitos de polinômio em uma indeterminada sobre um anel

A e função polinomial (em uma variável) sobre o mesmo anel A. Porém, a construção

feita acima possibilita entender melhor a diferença entre tais conceitos.

Sejam A um anel comutativo com unidade e a0, a1, · · · an ∈ A elementos quaisquer.

Uma função polinomial (em uma variável) sobre A é uma função f : A −→ A que associa

a cada x ∈ A um único y = a0 + a1x+ · · · anx
n ∈ A. Tal y, por ser único, é denotado por

f(x) = a0 +a1x+ · · · anx
n ∈ A. Uma função polinomial f : A −→ A é dita identicamente

nula se f(x) = 0 para todo x ∈ A.

Informalmente, podemos imediatamente perceber que polinômio e função polinomial

não são a mesma coisa, pois em um polinômio o “x”é uma sequência espećıfica em A,

enquanto que o “x”de uma função polinomial é qualquer elemento de A.

Formalmente, vemos a diferença de polinômios e função polinomial da seguinte forma:

considere o corpo Z2 = {0̄, 1̄} e a função polinomial f : Z2 −→ Z2 definida por

f(x) = x+ x2. Então,

f(0̄) = 0̄ + 0̄2 = 0̄ e f(1̄) = 1̄ + 1̄2 = 2̄ = 0̄,
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ou seja, f é a função polinomial identicamente nula. Mas é claro que pela nossa definição

de polinômio em uma indeterminada x, o polinômio p(x) = x+x2 ∈ Z2[x] não o polinômio

nulo. Em termos de sequências, esse polinômio seria (0̄, 1̄, 1̄, 0̄, 0̄, · · ·).

2.4 Algoritmo da Divisão de Euclides

Em termos técnicos, um algoritmo é uma sequência lógica, finita e definida de

instruções que devem ser seguidas para resolver um problema ou executar uma tarefa.

Em uma linguagem mais simples, um algoritmo nada mais é do que uma receita que

mostra passo a passo os procedimentos necessários para a resolução de uma tarefa. Ele

não responde a pergunta “o que fazer?”, mas sim “como fazer”.

Um algoritmo em matemática muito útil é o chamado Algoritmo da Divisão de Eu-

clides. Embora ele seja mais abrangente, nós o enunciaremos e provaremos para o caso

de polinômios sobre um corpo.

Teorema 2.7 (Algoritmo da Divisão de Euclides)

Seja K um corpo. Se f(x), g(x) ∈ K[x] com g(x) 6= 0, então existem únicos q(x), r(x) ∈

K[x] tais que

f(x) = g(x)q(x) + r(x),

onde r(x) = 0 ou gr(r(x)) < gr(g(x)).

Demonstração: Suponha que f(x) = a0 + a1x+ · · · anx
n e g(x) = b0 + b1x+ · · · bmxm,

com gr(g(x)) = m.

Existência:

Se f(x) = 0, basta tomar q(x) = r(x) = 0.

Suponha que f(x) 6= 0 e que gr(f(x)) = n. Se n < m, tome q(x) = 0 e r(x) = f(x).

Portanto, resta considerar o caso em que n ≥ m.

A idéia é multiplicar g(x) por um polinômio apropriado e subtrair o resultado de f(x)

a fim de conseguirmos um outro polinômio de grau menor que o grau de f(x).
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Multiplicamos g(x) por anb
−1
m xn−m. Subtraindo este resultado de f(x) obtemos um

outro polinômio f1(x), i.é,

f(x)− anb
−1
m xn−mg(x) = f1(x).

Como

anb
−1
m xn−mg(x) = (anb

−1
m xn−m)(b0 + b1x+ · · · bmxm)

= anb
−1
m b0x

n−m + anb
−1
m b1x

n−m+1 + · · ·+ anb
−1
m bmx

n−m+m

= anb
−1
m b0x

n−m + anb
−1
m b1x

n−m+1 + · · ·+ anx
n,

temos que gr(f1(x)) = gr(f(x)− anb
−1
m xn−mg(x)) < gr(f(x).

Se f1(x) = 0, então tomamos q(x) = anb
−1
m xn−m e r(x) = 0.

Se gr(f1(x)) < gr(g(x)), então tomamos q(x) = anb
−1
m xn−m e r(x) = f1(x).

Se gr(f1(x)) ≥ gr(g(x)), então executamos o processo anterior colocando f1(x) no

lugar de f(x). Ou seja, se f1(x) = c0 + c1x + · · · + cpx
p, com cp 6= 0 e p ≥ m, então

multiplicamos g(x) por cpb
−1
m xp−m e subtraindo este resultado de f1(x) obtendo um outro

polinômio f2(x) dado por

f1(x)− cpb
−1
m xp−mg(x) = f2(x).

Novamente, gr(f2(x)) < gr(f1(x)).

Substituindo f1(x) = f(x)− anb
−1
m xn−mg(x) na igualdade anterior obtemos

f2(x) = f(x)− anb
−1
m xn−mg(x)− cpb

−1
m xp−mg(x)

= f(x)− [anb
−1
m xn−m + cpb

−1
m xp−m]g(x).

Se f2(x) = 0, tomemos q(x) = anb
−1
m xn−mg(x) + cpb

−1
m xp−m e r(x) = 0.

Se gr(f2(x)) < gr(g(x)), tomemos q(x) = anb
−1
m xn−m + cpb

−1
m xp−m e r(x) = f2(x).

Se gr(f2(x)) ≥ gr(g(x)), repetimos o processo anterior. Ora, a cada passo o grau do

polinômio fi(x) encontrado diminui estritamente, de modo que após um número finito

de passos (n passos no máximo), obteremos fi(x) = 0, ou gr(fi(x)) < gr(g(x)). Neste

momento tomaremos r(x) = fi(x) e q(x) conforme acima.
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Unicidade:

Suponha que existam q1(x), q2(x), r1(x), r2(x) ∈ K[x] tais que f(x) = q1(x)g(x)+r1(x)

e f(x) = q2(x)g(x) + r2(x), onde ri(x) = 0 ou gr(ri(x)) < gr(g(x)), i = 1, 2. Então,

q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x) ⇒ r1(x)− r2(x) = [q2(x)− q1(x)]g(x).

Se q1(x) 6= q2(x), então

gr(r1(x)− r2(x)) = gr((q1(x)− q2(x))g(x) = gr((q1(x)− q2(x)) + gr(g(x)) ≥ gr(g(x)).

Porém, como gr(ri(x)) < gr(g(x)), temos que gr(r1(x)−r2(x)) < max{gr(g(x)), gr(g(x))} =

gr(g(x)), contradição.

Logo, q1(x) = q2(x). Neste caso, claramente também temos r1(x) = r2(x).

Nomenclatura: Na notação do teorema anterior, f(x) é chamado dividendo, g(x) é

chamado divisor, q(x) é chamado quociente e r(x) é chamado de resto. 2

Exemplo 2.8 Considere f(x) = 12x3 + 4x2 − 8x e g(x) = 4x pertencentes a R[x].

Determine o quociente e o resto da divisão de f(x) por g(x) usando o algoritmo da

divisão.

Solução: Note que o gr(f(x)) = 3, gr(g(x)) = 1 e os conficientes lideres de f(x) e g(x)

são, respectivamente, 12 e 4. Pelo algoritmo da divisão temos:

f1(x) = f(x)− 12 · 4−1x3−1 · g(x) = (12x3 + 4x2 − 8x)− (3x2) · 4x = 4x2 − 8x.

Como gr(f1(x)) ≥ gr(g(x)), vamos repetir o processo anterior.

f2(x) = f1(x)− 4 · 4−1x2−1 · g(x) = (4x2 − 8x)− (x) · 4x = −8x.

Como gr(f2(x)) ≥ gr(g(x)), vamos repetir o processo anterior.

f3(x) = f2(x)− (−8) · 4−1x1−1 · g(x) = (−8x)− (−2) · 4x = 0.

Como f3(x) = 0, temos do algoritmo da divisão que q(x) = 3x2 + x− 2 e r(x) = 0.

Exemplo 2.9 Considere f(x) = 12x3−19x2 +15x−3 e g(x) = 3x2−x+2 pertencentes

a R[x]. Determine o quociente e o resto da divisão de f(x) por g(x) usando o algoritmo

da divisão.
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Solução: Note que o gr(f(x)) = 3, gr(g(x)) = 2 e os coeficientes ĺıderes de f(x) e

g(x) são, respectivamente, 12 e 3. Pelo algoritmo da divisão temos:

f1(x) = f(x)− 12 · 3−1x3−2 · g(x) = (12x3 − 19x2 + 15x− 3)− (4x) · (3x2 − x+ 2) =

−15x2 + 7x− 3.

Como gr(f1(x)) ≥ gr(g(x)), vamos repetir o processo anterior.

f2(x) = f1(x)− (−15) · 3−1x2−2 · g(x) = (−15x2 + 7x− 3)− (−5) · (3x2−x+ 2) = 2x+ 7.

Como gr(f2(x)) < gr(g(x)), temos do algoritmo da divisão que q(x) = 4x − 5 e r(x) =

2x+ 7.

Observação 2.10 O Algoŕıtmo da Divisão de Euclides pode ser aplicado sobre A[x],

onde A é um domı́nio de integridade, sempre que o coeficiente ĺıder do divisor g(x) é

invert́ıvel em A. Em particular, o Algoŕıtmo da Divisão de Euclides pode ser aplicado

quando o divisor g(x) é um polinômio mônico.

Exemplo 2.11 Considere f(x) = 2x3 + 6x2 + 7x − 1 e g(x) = x + 3 pertencentes a

Z[x]. Determine o quociente e o resto da divisão de f(x) por g(x) usando o algoritmo

da divisão.

Solução: Mesmo que Z não é corpo, pela observação anterior, podemos aplicar o

Algoritmo de Euclides, pois g(x) é um polinômio mônico em Z[x].

Note que o gr(f(x)) = 3, gr(g(x)) = 1 e os coeficientes ĺıderes de f(x) e g(x) são,

respectivamente, 2 e 1. Pelo algoritmo da divisão temos:

f1(x) = f(x)− 2 · 1−1x3−1 · g(x) = (2x3 + 6x2 + 7x− 1)− 2x2 · (x+ 3) = 7x− 1.

Como gr(f1(x)) ≥ gr(g(x)), vamos repetir o processo anterior.

f2(x) = f1(x)− (7) · 1−1x2−2 · g(x) = (7x− 1)− 7 · (x+ 3) = −22.

Como gr(f2(x)) < gr(g(x)), temos do algoritmo da divisão que q(x) = 2x2 + 7 e

r(x) = −22.
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Definição 2.12 Dados um polinômio f(x) = a0 + a1x + · · · anx
n ∈ A[x], onde A é um

anel comutativo com unidade, e um elemento α ∈ A, a substituição de x por α em f(x)

é um elemento de A dado por

f(α) = a0 + a1α+ · · · anα
n.

Se f(α) = 0, diremos que α é uma raiz de f(x) em A.

Corolário 2.13 Seja A um domı́nio de integridade. Se f(x) ∈ A[x] e α ∈ A, então o

resto da divisão de f(x) por x− α é f(α). Em particular, α é raiz de f(x) se e somente

se f(x) = (x− α) · q(x), para algum q(x) ∈ A[x].

Demonstração: Uma vez que x−α é mônico, podemos aplicar o Algoritmo de Euclides

e obteremos polinômios q(x), r(x) ∈ A[x] tais que f(x) = (x − α) · q(x) + r(x), onde

r(x) = 0 ou gr(r(x) < 1. Em todo caso, r(x) = a, para algum a ∈ A. Logo,

f(α) = (α− α) · q(α) + r(α) = a = r(x).

Em particular,

α é raiz de f(x) ⇔ f(α) = 0 ⇔ r(x) = 0 ⇔ f(x) = (x− α) · q(x).

2

Corolário 2.14 Seja A um domı́nio de integridade. Se f(x) ∈ A[x] é um polinômio não

nulo de grau n então o número de raizes de f(x) é menor ou igual a n.

Demonstração: Faremos a demonstração por indução sobre n = gr(f(x)). Se gr(f(x)) =

0 então f(x) = a, com 0 6= a ∈ A, e portanto o número de ráızes de f(x) é zero.

Suponha agora que o corolário vale para polinômios de grau n − 1. Vamos mostrar

que vale para f(x). Se f(x) não possui ráızes em A, então o corolário segue. Porém, se

f(x) possui uma raiz α ∈ A então, pelo corolário anterior, f(x) = (x − α) · q(x), para

algum q(x) ∈ A[x]. Como q(x) tem grau n − 1, segue da hipótese de indução que q(x)

tem no máximo n− 1 ráızes. Mas toda raiz de q(x) também é uma raiz de f(x). Logo,

f(x) tem no máximo n ráızes. 2
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Observação 2.15 Sejam K e L dois corpos tais que K ⊆ L. O número de ráızes de um

polinômio f(x) ∈ K[x] pode aumentar se o considerarmos como um polinômio de L[x].

Por exemplo, o polinômio f(x) = x3− 2 ∈ Q[x] não possui ráızes em Q, possui uma raiz

em R e possui três ráızes em C, a saber,

α1 = 1, α2 = 3
√

2

(
−1

2
+ i

√
3

2

)
, α3 = 3

√
2

(
−1

2
− i

√
3

2

)
.

Se retirarmos a hipótese de A ser um domı́nio de integridade então o corolário anterior

é falso. Por exemplo, o polinômio de grau 2 f(x) = x2 + 3̄x + 2̄ ∈ Z6[x] possui 4 ráızes

em Z6. São elas 1̄, 2̄, 4̄ e 5̄.

25



Bibliografia
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