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Introducao

Na maior parte dos textos de Algebra, o conceito de polinomio é definido invariavel-

mente como uma expressao formal do tipo
ap+ar-x+ay i+ +a, " (1)

onde cada a;, i = 1,2,---n é um elemento de algum anel A.

No entanto, com um olhar mais atento e critico percebemos que uma tal expressao
envolve operagoes entre elementos deste anel e um objeto, a priore, nao definido: o
simbolo x. Quem é este simbolo nao identificado? Qual é a natureza de x? E um
elemento do anel de coeficientes A? Vejamos:

Observe que o papel de z em (1) é o mesmo de 7 na expressao
2—-3-7+7-w2—-5-73,

onde os coeficientes 2, —3,7 e —5 das poténcias de 7 estao em Z. Mas tal expressao nao
tem sentido em Z. Portanto, nao é correto dizer que x representa, necessariamente, um
elemento do anel de coeficientes.

Seria x um vetor e o termo a; -z o produto por escalar de um espaco vetorial? Observe
que isto gera um incomodo, uma vez que aparecem as poténcias de z na expressao (1)
e produto de vetores nao estda definido em espacos vetoriais. Isso descarta a natureza
vetorial do objeto x.

O que a expressao (1) sugere é a existéncia de uma estrutura algébrica “maior” que
contém os coeficientes a; e um objeto especial nao pertencente ao anel de coeficientes.

Definir polinémio como uma expressao formal, isto é, sem valor pratico, de natureza



abstrata, deixa nosso conhecimento mateméatico com um pequeno vazio, algo que certa-
mente perturba as mentes dos estudantes mais exigentes.

O objetivo deste trabalho é introduzir uma defini¢cao precisa do conceito de polinémios
com coeficientes num anel e responder a pergunta: quem ¢é o x da questao dos polinomio?
Também definiremos uma adi¢ao e uma multiplicagao no conjunto A[z], formado por to-
dos dos polinomios com coeficientes em anel A e mostraremos que tal conjunto é um
anel. Finalmente, provaremos que se A é um corpo, entao vale o Algoritmo da Divisao de
Euclides em A[z] e mostraremos a crucial diferenca entre polindémios e fungoes polinomi-
ais. Iremos mostrar que tais conceitos sao totalmente distintos. Finalizamos o trabalho
apresentando algumas aplicagoes deste algoritmo para a obtencao de resultados realmente

curiosos sobre polinomios.



Capitulo 1

Anéis e Dominios

1.1 Definicoes e Exemplos

No primeiro capitulo, vamos introduzir alguns conceitos e resultados que serao necessarios
para o desenvolvimento do préoximo capitulo, que é o enfoque principal deste mini-curso.
O leitor que ja cursou um curso basico de estruturas algébricas pode avancar este capitulo.

Comecgamos esta segao definindo o conceito de anel.

Definicao 1.1 Um anel é um conjunto nao vazio A munido com duas operacoes inter-
nas denotadas por + (chamada adigao) e - (chamada multiplicagdo) que satisfazem as

sequintes condi¢oes para quaisquer a,b,c € A:
(A.1) A adicao € associativa, i.€, (a +b) +c=a+ (b+c);
(A.2) A adigao é comutativa, i.é, a +b=b+ a;

(A.3) Eziste um elemento neutro da adi¢ao, i.€, existe um elemento em A, denotado por

04, tal que 04 +a =a+ 04 = a, para todo a € A;

(A.4) Todo elemento de A possui um simétrico com respeito a adi¢ao, i.€, para todo a € A,

existe um elemento em @' € A tal que a+a' =a' +a =04;
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(M.1) A multiplicagao € associativa, i.é, (a-b)-c=a-(b-c);

(M.2) A multiplicagcdo € distributiva em relagdo a adigao, i.é, a - (b+c¢) = (a-b) + (a-c)
e(b+c)-a=(b-a)+ (c-a);

Quando um conjunto A é um anel, dizemos também que A possui ou admite uma
estrutura algébrica de anel.

Muitas vezes a palavra produto ¢é usada para disignar a operagao de multiplicacao,
assim como a palavra soma é usada para disigar a operacao de adi¢ao. Isto nao é correto.
A adigao e a multiplicacao sao as operagoes internas de um conjunto. O resultado da
adicao de dois elementos é chamado soma, enquanto que o resultado da mulplicacao de
dois elementos é chamado de produto.

A condicao (A.3) da defini¢ao anterior, garante a existéncia de um elemento neutro
da adigao. Se 04 e 0y forem dois elementos neutros da adi¢do de um anel A, entao, em
particular, 04 = 04+ 0/, = 0/,. Isto mostra que o elemento neutro da adi¢ao é inico num
anel. Tal elemento é chamado zero do anel A e sempre que nao houver possibilidade de
confusao, ele serd denotado simplesmente por 0.

A condicao (A.4) da Definigao 1.1 garante que todo elemento a de um anel A admite
pelo menos um elemento simétrico em relacao a adicdo. Suponha que a’ € Aed” € A

sejam simétricos de a € A em relacao a adicao. Temos:

a= d+0 por (A.3)
= d + (a+d") poisa” é simétrico de a
= (d'+a)+a" por (A1)
= 0+ad" pois a’ é o simétrico de a

= d' por (A.3).

Isto significa que o simétrico a’ de a em relagao a adi¢ao é unico e sera denotado por —a.
Assim, a + (—a) = (—a) + a = 04.

Antes de darmos exemplos, vamos definir mais alguns conceitos importantes.

Se a multiplicacao - em um anel A for comutativa, i.é, se a - b = b - a, para quaisquer

a,b e A, diremos que A é um anel comutativo.



Pode acontecer algumas vezes, as vezes nao, de existir um elemento v num anel A
tal que a-u = u-a = a para todo a € A. Quando isso acontece, diremos que o anel
A é um anel com unidade. Em outras palavras, um anel com unidade é um anel que
possui um elemento neutro para a multiplicacao. De maneira andloga ao que foi feito
para o elemento neutro da adicao, mostra-se que, quando existe, o elemento neutro da
multiplica¢do de um anel é unico e serd denotado por 14 (ou simplesmente 1 quando nao
houver possibilidade de confusao). Tal elemento é chamado a unidade de A.

NOTA(;AO: Se A é um anel com operacao de multiplicacao - e a,b € A, escrevere-
mos muitas vezes ab no lugar de a - b.

Sejam A um anel e a,b € A. Como —b € A, definimos a —b por a —b = a+ (—b). Isto
induz uma nova operacao sobre A, chamada subtracdo e denotada por —. O resultado
da subtracao de dois elementos é chamada de diferenga. Também, se n é um numero

inteiro positivo, definimos a” como sendo a” = ga-a-----a. Quando A tem unidade 1,
—_——

n vezes
definimos a® = 1.

Vamos dar uma pequena pausa nas defini¢oes para darmos alguns exemplos. Eles nos

motivarao a definir outros tipos de aneis “especiais”.

Exemplo 1.2 O conjunto dos nimeros inteiros Z é um anel comutativo com unidade

com a adi¢ao + e multiplicacao - usuais.

Exemplo 1.3 O conjunto dos niimeros inteiros pares, denotado por 27, € um anel comu-

tativo com a adicao + e multiplicacao - usuais. Porém, 27, nao é um anel com unidade.

Exemplo 1.4 O conjunto dos niumeros naturais com a adicao e multiplicacao usuais N
nao é um anel pois em geral a propriedade (A.4) da Defini¢ao 1.1 nao € vdlida. De

fato, todo nimero natural nao nulo nao possui um simétrico com respeito a adicao.

Exemplo 1.5 O conjunto dos nimeros racionais Q, bem como o conjunto dos nimeros
reais R com as operacoes usuais de adicdo e multiplicacdo sao anéis comutativos com

unidade.

Exemplo 1.6 Considere o conjunto Ms(R) de todas as matrizes 2 x 2 com entradas

reais, 1.€,



11 Q12

My(R) = D a, Az, a1, a2 € R
Qg1 Q22
. L. . . _ ai Qa2 bir bi2
Definimos a adicao e multiplicacao de duas matrizes e
Qg1  G22 bo1 b2

pertencentes a My(R) da sequinte forma:

aip a2 b1 Do ay; +bn ag + bio
Q21 92 ba1 Do a1 + bor  age + b
e
air a2 b1 Do a11011 + a12b21  a11b12 + aj2ba
21 A22 ba1 Do 21011 4 ag2bor  ag1bia + agebas

Fica como exercicio para o leitor provar que as operagoes de adicao @ e multiplicagao

® definidas acima ddo ao conjunto Ms(R) uma estrutura de anel com unidade. Observe

que o elemento neutro da adicao € a matriz , chamada matriz nula, e a matriz
00
10
¢ a unidade de My(R), chamada matriz identidade.
01
11 11
Considere agora as matrizes e de M5(R). Temos:
00 01
11 11 1 2
® =
00 01 00
e
11 11 11
® =
01 00 00

Portanto, My(R) com as operacoes @ e ® definidas acima é um anel com unidade, mas
nao € comutativo. Fica como exercicio generalizar o exemplo anterior para o conjunto

M, (R) de todas as matrizes n X n com entradas reais.

Exemplo 1.7 Considere o conjunto Z[\/3] = {a + b/3|a,b € Z}. Para quaisquer
elementos a + bv/3,c+ dV3 € Z[\/g] definimos:
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(1) (a+bV3)@ (c+dV3) = (a+c)+ (b+d)V3
(2) (a+bv3)® (c+ dv3) = (ac + 3bd) + (ad + bc)V/3

Nio é dificil (¢ apenas trabalhoso) mostrar que o conjunto Z[\/3] munido com as operagoes
de adicao ® e multiplicacao ® definidas acima é um anel comutativo com unidade. O

zero deste anel € o elemento 0 + 0v/3, enquanto que a unidade € o elemento 1 + 0v/3.

O leitor pode se inspirar no que acabamos de fazer para mostrar que para qualquer
nimero inteiro m, o conjunto Z[y/m| admite uma estrutura algébrica de anel comutativo
com unidade. A adigao e uma multiplicacao em Z[y/m] sdo definidas de maneira andloga
ao que foi feito acima.

Observe que em Z, 27, Q, R e Z[v/3] apresentados acima, a multiplicacao de quaisquer
dois elementos nao nulos é sempre um elemento nao nulo. O mesmo nao ocorre com

M2 (R>7 pOiS

Para destacar a diferenca entre tais anéis, temos a seguinte defini¢ao.

Definicao 1.8 Um anel comutativo com unidade A é dito ser um dominio de integridade

ou dominio (simplesmente) se vale a sequinte sentenga:
Va,be A, sea#0 eb#0 entao a-b+# 0.

Logicamente, isto € equivalente a dizer que se a e b sdo elementos de A tais que a-b =10

entao a =0 oub=0.

Conforme vimos antes, os anéis Z, 27, Q, R e Z[\/g] sao dominos de integridade
enquanto que Ms(R) nao é dominio de integridade. Veremos adiante mais exemplos de
anéis que nao sao dominios de integridade.

Note que se z # 0 é um elemento em um dominio de integridade D e y,z € D, entao

r-y=u1x- 2=y =z (verifique!)



Tal propriedade é chamada lei do corte a esquerda. Analogamente temos a lei do corte a

direita.

Exemplo 1.9 Os conjuntos dos nimeros racionais Q e dos numeros reais R sdo anéis
comutativos com unidade com as operacoes de usuais de adicao e multiplicacao. Note
que além disso, todo nimero racional (real) nao nulo admite um inverso multiplicativo,
i.€, para todo x € Q — {0}, (x € R —{0}) ezistey € Q (y € R) tal que zy = 1. Anéis

que satizfazem esta ultima propriedade recebem um nome especial.

Definigao 1.10 Um anel com unidade (nao necessariamente comutativo) A é dito ser
um anel com divisao se todo elemento nao nulo de A admite um inverso multiplicativo,

i.€, para todo x € A — {0}, existe y € A tal que x -y = 14.

Pode-se mostrar que num anel com divisao A o inverso multiplicativo de 0 # x € A
¢ tinico. Tal elemento é denotado por z~ 1.

Um anel com divisao e comutativo é chamado de corpo. Em outras palavras, um
corpo é um anel comutativo com unidade cujos elementos nao nulos admitem um inverso

multiplicativo.

Os anéis Q e R sao corpos. O conjunto dos nimeros complexos
C={a+bi:abecR}

com adi¢ao e multiplicagao usuais é um corpo. O inverso de um elemento nao nulo a + b
b

— i.
a2+ 02 a?+ b
Outros corpos muito importante na matematica sao construidos da seguinte forma:

¢ o numero complexo

considere o conjunto Q[,/p] = {a + by/p|a,b € Q}, onde p é um nimero inteiro primo.
Para quaisquer elementos a + b,/p, ¢ + d./p € Q[,/p] definimos:

(1) (a+byp) ® (c+dyp)=(a+c)+ (b+d)/p
(2) (a+by/p) ® (c+d\/p) = (ac+ pbd) + (ad + bc)\/p

O conjunto Q[,/p] com as operacdes acima ¢ um corpo. O inverso de a + by/p € Q[,/p] é

a b
o elemento —— PR — VP € Q[\/D]

a?
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1.2 Subanéis e Homomorfismos

Esta sera uma breve secao para introduzirmos dois conceitos que necessitamos, mas
que serao mencinados minimamente no préoximo capitulo. Para maiores detalhes, o leitor
podera procurar em ?7.

Sejam A um anel com adicao + e multiplicacao - e B um subconjunto nao vazio de
A. Se B com estas operacoes for um anel, diremos que B é um subanel de A.

Vamos agora dar um critério para decidir se um subconjunto de um anel é ou nao um

subanel.

Proposicao 1.11 Sejam A um anel com adicao + e multiplicagdao - e B um subconjunto

de A. Entdo, B € um subanel de A se e somente se as sequintes condigoes sao verificadas:
(1) 0 € By

(ii) v,y € B=—= x—y € B;

(tii) z,y € B=x-y € B.

A demonstracao é relativamente facil e por isso sera deixada a cargo do leitor.

Vamos usar a notacao B < A para indicar que B é um subanel de A.

Exemplo 1.12 Conforme vimos na secao anterior temos os sequintes exemplos:
(i) Z<Z<Q<R<R<C;
(i) Z < ZI/3 < QlyFl <R

Sejam A e B dois anéis. Por comodidade vamso denotar as opreragoes destes dois
anéis por + e - simplesmente. Uma funcao f: A — B é dita ser um homomorfismo de

A em B se F satisfaz as seguintes condigoes:
(1) fle+y)=f@)+ fy), Yo,y e 4

(i) f(z-y)=f(z)  fly), Va,y € A.



Quando um homomorfismo f de um anel A em um anel B é injetor (resp. sobrejetor),
diremos que f é um monomorfismo (resp. epimorfismo). Quando f é um monomorfismo,
podemos “identificar”cada elemento a € A com f(a) € B e, usando um abuso de lin-
guagem, podemos considerar A contido em B. Se f é um homomorfismo bijetor (ou seja,

inversivel), diremos que f é um isomorfismo.

1.3 O Anel 7Z,,

Fixe um nimero inteiro m e considere a relagao R definida sobre Z da seginte maneira:

Va,b€ Z,aRb <= ml|a—b
<= a — b é multiplo de m
<= a—b=km, para algum k € Z

<= a = km + b, para algum k € Z.

Nao é muito dificil de mostrar que R é uma relacao de equivaléncia. Assim, temos
as classes de equivaléncia modulo R. Se n € Z, sua classe de equivaléncia médulo R,

denotada por n, é dada por
n={a€ZlaRn}={acZ|la=km+n,keZ}={km+n|kecZ}.

Em outras palavras, n é o conjunto de todos os ntimeros inteiros a cujo resto da divisao

de a por m é n. Disso resulta que as tnicas classes de equivaléncia moédulo R sao:

0={a€Z|aR0} ={a€Z|a=km,keZ}={km|keZ}.
1={a€ZlaRl}={a€Z|la=km+1,k€Z} ={km+1|keZ}.
5—f{acZ|aR2} ={acZ|a=km+2,keZ) = {km+2|keZ).

m—1={a€Z|aR(m—1)} ={a €Z|a=km+(m—1),k € Z} = {km+(m—1) |k € Z}
O conjunto quociente de Z por R é o conjunto de todas as classes de equivaléncia

médulo R. Tal conjunto é denotado por Z,,. Simbolicamente, Z,, = {0,1,---,m — 1}.
Em Z,, podemos definir uma operacao interna de adicao ¢ e uma operacao interna

de multiplicacao ® da seguinte forma:
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(1) Vi, €Zp,i®Dj=1+j=k, onde k é o resto da divisao de i + j por m.
(2) V4,] €Zp,i®j=1i-j=Fk ondek é o resto da divisao de i - j por m.

Um bom exercicio é mostrar que estas operacoes estao bem definidas e que Z,, com
tais operacoes ¢ um anel comutativo com unidade.

Para facilitar a escrita, de agora em diante escreveremos simplesmente ¢ + j no lugar
dei®jei -jmnolugar dei® j.

Observamos que para m € Z fixado, Z,, é um anel finito que tem exatamente m

elementos. O Zg, por exemplo, tem 6 elementos. Sao eles: 0,1,2,3,4 e 5. Observe que
neste caso, 2-3 = 6 = 0. Isto mostra que Zg nao um dominio de integridade e portanto
nao é um corpo. Deixamos para o leitor mostrar que Z,, é um corpo se e somente se m
¢ um numero primo.

Embora pareca que estes anéis estejam muito distantes da nossa vida cotidiana, um
olhar um pouco mais critico nos leva a conclusao do contrério. De fato, imagine um
enfermeira que comega seu turno as 8 horas da noite, ou melhor, as 20 horas e que tem
uma jornada de trabalho de 6 horas. Que horas esta enfermeira para de trabalhar? As
26 horas, ou as 2 horas? A resposta certa é 2 horas (da madrugada se preferir). Isto
ocorre porque um dia tem 24 horas. As horas terrestres sao: a hora 0, a hora 1, a hora 2,
-+, a hora 23. Assim sendo, nenhum reldgico digital do mundo é capaz de contar a hora

24. Portanto, a grosso modo, podemos pensar que as horas do dia terrestre funcionam

mais ou menos como o Zay.
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Capitulo 2

Polinomios em uma Indeterminada

2.1 Introducao

Neste capitulo vamos introduzir uma definicao precisa do conceito de polindomios em
uma indeterminada com coeficientes em um anel e responder a pergunta: quem é o x da
questao dos polinomio? Também definiremos uma adi¢ao e uma multiplicagao no con-
junto A[z], formado por todos dos polinémios com coeficientes em anel A, e mostraremos
que tal conjunto é um anel. Finalmente, provaremos que se A é um corpo, entao vale
o Algoritmo da Divisdo de Euclides em Alz| e mostraremos a crucial diferenca entre
polinomios e fungoes polinomiais. Finalizamos o capitulo dando algumas aplicagoes do

Algoritmo da Divisao de Euclides.

2.2 Sequéncias e Polinémios

Seja A um conjunto qualquer. Uma sequéncia em A é uma funcao a : N — A, ou
seja, uma sequéncia nada mais é do que um funcao a cujo dominio é N e o contra-dominio

é A. Afim de simplificarmos a notacgao, para todo n € N, denotaremos a imagem de n pela
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fungao a por a, e nao por a(n) como estamos acostumados. E comum representarmos
uma sequéncia em A por (a,)nen, ou simplesmente (a,), ou ainda (ag,aq,as,as, - +).
Numa sequéncia (ag, ay, as, as,--+), cada termo a; é chamado de coeficiente. O indice i
indica a posicao do coeficiente na sequéncia.

Seja A um anel com elemento neutro da adigdo 0. Dada uma sequéncia p = (ay)nen

em A, definimos o suporte de a como sendo o seguinte conjunto:

sup(p) ={i € N : a; # 0}

Observe que sup(p) é um subconjunto de N e nao do anel A.
A sequéncia (0,0,0,0,---) cujos coeficientes sdo todos nulos tem suporte vazio. Tal
sequencia é chamada sequéncia nula.

De agora em diante, A denotara um anel comutativo com unidade 1.

Definicao 2.1 Seja A um anel comutativo com unidade 1. Um polinomio numa indeter-
minada sobre A, ou simplesmente um polinémio sobre A, é uma sequéncia (a,)nen Cujo

suporte € finito.

Em outras palavras, um polindbmio em uma indeterminada sobre A é uma sequéncia
(an)neny em A que tem apenas um numero finito de coeficientes sdo nao nulos. Assim, a
partir de um certo indice m teremos a,,+1 = apio = -+ = 0.

Por simplificacao, muitas vezes diremos simplesmente um polinomio sobre A ou ainda
um polinomio com coeficientes em A para nos referirmos a um polinomio numa indeter-
minada sobre A

Note que a sequéncia nula é um polinomio por ter suporte vazio, portanto finito. Este
polinémio é chamado polinémio nulo. Como A tem 1, a sequéncia (1,0,0,---) também
¢ um polinoémio cujo suporte é {0}. J4 as sequéncias (0,1,0,---) e (1,1,0,--+) também
sdo polindmios cujos suportes sao, respectivamente, iguais a {1} e {0, 1}.

Dizemos que dois polinémios p = (ag,as,az,---) € ¢ = (bg, by, b, -) sobre A sdo
iguais se e somente se a; = b; em A, para todo i € N.

Dado um polinémio nao nulo p = (ag, a1, as, - - ) sobre A, definimos o grau de p como
sendo o maior nimero natural pertencente a sup(p). Denotamos o grau de um polinémio

nao nulo p por gr(p). Como o polinémio nulo tem suporte vazio, seu grau nao é definido.
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Note que ¢gr(1,0,0,---) = 0, enquanto que gr(0,1,---) = gr(1,1,0,---) = 1.

Note também que se p = (ag, ai, as,--+) é um polindémio sobre A e gr(p) = n, entao
a,, = 0 para todo m > gr(p).

Um polinomio de grau zero é chamado polinomio constante. Explicitamente, os
polinémios constantes sdo da forma (ag,0,0,-- ), onde ay € A.

Se p = (ag, a1, as,---) é um polindomio sobre A com gr(p) = n, o coeficiente a,, é
chamado coeficiente lider de p. Um polinomio é dito ser monico se seu coeficiente lider
igual a 1.

Seja A o conjunto de todos os polinomios em uma ideterminada sobre A. Vamos
definir uma operacao de soma & e um operacao de multiplicacdo ® no conjunto .A.

Sejam p = (ag, a1, az,--+) € ¢ = (by, by, by, - - +) dois polinémios de A. Definimos

p®qg= (ap+bo,ar+bi,as+bg, -, ap+by,--)
e
p®q: (00701,027"',Ck,"'),

onde

Co — aobo
C1 = a0b1 + a1b0
c2 = agby + a1by + azby
k

Cr = aobk + albk_l + azbk_g +--- 4+ ak_lbl + Clkbg = Z aibk_i
i=0

|

E facil ver que sup(p ® q) C sup(p) U sup(q), e portanto sup(p @ q) é finito. Logo,
p®q € A. Para mostrar que p ©® q € A, suponha que gr(p) = n e gr(q) = m. Se
k>n+m,entao k >n, k> m ek —n > m. Disso segue que a,11 = apyo =---ap =0
eb,=by_1=---=b._, =0, e portanto

Cp = gobk + albk,1 + -+ anbk,@—i— Cln+1bk,n,1 +---+ akbo =0.

NV
=0

=0

Isto mostra que para todo k > n +m, ¢, = 0, ou seja, sup(p @ q) é finito.
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Deste modo, p @ p e p ® q sao elementos de A, i.é, ® e ® sao operacoes internas de
A, chamadas adicao e multiplicacao de polinémios, respectivamente.

Como a adicao + em A ¢ associativa e comutativa, segue facilmente que a adigao de
polinémios também é associativa e comutativa. O polinémio nulo é o elemento neutro da
adigao, enquanto que o simétrico aditivo do polinémio p = (ag, ai, az,--) é o polindémio
(—ag, —ai, —ag, - - -) denotado por —p.

Para a multiplicagdo temos o polinomio (1,0,0,---) como sendo o elemento neutro.
Além disso, a comutatividade da multiplicagao segue diretamente da comutatividade da
multiplicagao em A e da maneira como foi definida multiplicagao de polindmios acima.

A associatividade da multiplicacao e a distributividade da mesma em relacao a adicao
sao um pouco mais sofisticadas e deixamos como exercicio para o leitor.

Logo, concluimos que o conjunto A munido com as operagoes de adi¢ao e multiplicacao
definidas acima ¢ um anel comutativo com unidade, chamado anel de polinomios em uma

indeterminada com coeficintes A ou, por simplificacao, anel de polinomios sobre A.

Proposigao 2.2 Seja A um anel comutativo com unidade 1 e A o anel de polinomios

sobre A. O conjunto Ay = {(ap,0,0,---) : ag € A} € um subanel de A isomorfo a A.

Demonstracao: Para provarmos este resultado, vamos usar a Proposicao 1.11. Clara-
mente, (0,0,0,---) € Ag. Agora, sejam p = (ag,0,0,---) e ¢ = (bo,0,0,---) elemen-
tos de Ag. Neste caso, temos a; = b; = 0 para todo ¢ € N;7 > 0. Note que,
—q = (—by,0,0,---) € Ag e pB(—q) = (ap+(—by),0+0,0+0, - --) = (ag—bp, 0,0, --) € Ap.

Além disso, p ® ¢ = (¢, €1, Ca, - - -) onde

00:a0~b0
01:a0b1+a1b0:a0-0+0-bo:0
62:a0b2+a1b1+a2b0:a0~0+0-0+0-b0:0

ck:aobk+a1bk_1—I—agbk_2+---—|—ak_1b1—|—akbo:a0-0+0-0+-~-—|—0-b0:0

L

Portanto, p ® ¢ = (aghy, 0,0, --) € Ay 0 que mostra que Ay é um subanel de A.
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Seja ¢ : A — Ay definida por ¢(a) = (a,0,0,--+), para todo a € A. E facil ver
que ¢ é um homomorfismo de anéis cuja inversa é a funcao ¢ : Ay — A definida por

¥(ap,0,0,--+) = ag, para todo (ag,0,0,---) € Ag. Logo, ¢ é um isomorfismo de anéis. O

A proposicao anterior diz que o conjunto dos polinémios constantes sobre A é subanel
de A que é isomorfo ao anel A. Isto nos serd bastante 1til mais adiante.

A seguintes propriedades dos polinémios também sao notaveis.

Lema 2.3 Seja A um anel comutativo com unidade 1 e A o anel de polindmios sobre A.

Entao, as sequintes identidades sao validas:

(Z> (a07a17a27"') © (07170707”') = (0,@0,(1,1,0,2,"'), vai € A,Z € N.

(i5) (a,0,0,--)® (0,1,0,---)" = (0,0,---, _a_,0,---),Ya € A.
POS. n
Demonstragao: (1) Para simplificarmos a notagao, sejam p = (ag,aq,a9, ) €

q = (bo,b1,ba,--) tal que by = 1 e b; = 0 para todo i € N;i # 1. Entdo, p® q =

(co, €1, €, - ), onde

(
Co :agbo = CL()O:O

c1 = apby + a1by = apl + @10 = ag

Cy = CLQbQ + (llbl -+ a2b0 = CLOO + CL11 -+ CLQO = a1

¢k = aoby + arby—1 + -+ + ag_1by + arby = ag0 + a0 + - - - + ap_11 + a0 = ap_,

L .
L0g07 b O] q= (CL(), 1,09, - ) © (07 ]-7 07 07 o ) = (07 Qp, A1, - - )
(77) Faremos a prova por indugao sobre n.

Como (0,1,0,---)° = (1,0,0,---), temos
(a,O,O,~-)®(O,1,O,~~)O:(a,O,O,'--)®(1,0,0,~~~) :(a,0,0,---)

e portanto a a afirmacao vale para n = 0.

Suponha que (a,0,0,---) ® (0,1,0,---)" = (0,0,---, _a  ,0,---) para algum n € N.
pos. n
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Entao,

(a,0,0,~-)@(0,1,0,-~~)”+1 — (a,0,0,"-)@(0,1,0,~~~)"®(0,1,0,0~~~)
= (0,0,---, _a_,0,--)®(0,1,0,0,---)

pos. n
= (0,0,---, _a, ,0,---), peloitem (ii)
pPOS. n+1
O
Considere um polinémio p = (ag, a1, as,as, -, a,,0,0,---) com coeficientes em um

anel comutativo com unidade A, como a, # 0. Entéao, pelo item (i) do lema anterior,

temos:

p = (a0a0707"')@(Ovalaoa"')®(0707a270a"')@"'@(ana"'aoaanvo"')
= (ap,0,0,--)®(0,1,0,--)° @ [(a1,0,0,---) ® (0,1,0,0,---)!]
[(a2,0,0,-++) ©(0,1,0,0,- ) &[(a3,0,0,--+) ©(0,1,0,0, - )’

@...@[(an’o,()’...)@(0’1’070,...)”]

Observe que pela Proposicao 2.2, o conjunto dos polinémios constantes sobre A é
subanel de A que é isomorfo ao anel A. Assim, podemos identificar a; com (a;, 0,0, - --)
e portanto, podemos escrever a; no lugar de (a;,0,0,---), para todo i € N. Deste modo,
o sfimbolo a; sera usado para designar duas coisas distintas: o elemento a; € A, quando
este for o caso, e o elemento (a;,0,0,---) € A, quando estivermos estudando polinoémios.

Logo, o polinémio p = (ag, a1, as, as, -+, a,,0,0,--+) serd escrito como

b = Clo@(0,1,0,"')0@[CL1®(O,].,O,O,"')l]@[CLQ@(O,l,O,O,"‘)Q]

®las ® (0,1,0,0,-- )] @ -+ @ [a, ® (0,1,0,0,---)"].

Por razoes préaticas, vamos denotar o polinémio (0, 1,0,0, - - -) pelo simbolo z. Entao,
O=lezx! = d 1 lindbmio p = 0,0
como x” = 1 e z' = x, podemos escrever qualquer polinomio p = (ag, ay, as, as, - -, ay,, 0,0, )

da seguinte forma:

p=ay®(a;02) B (a2 02*)® (a3 02%) & - & (a, © a™).
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Para simplificar ainda mais a notagao, vamos escrever + no lugar de & e - no lugar
de ©.
Logo, com todas as convensoes que acabamos de propor, todo polindomio
= e 0.0.---) éi 1 2 3 ... n
p ap, a1, Gz, as, , O, 0,0, e 1gual a soma ag + a1x + asx” + asxr” + + apx”,

onde a;z' denota a; - °. Deste modo,

A={ap+ a1x + axx®> + - +a,z"|a; € A e nEN}:{ZaixﬂaieA e nGN},

i=1
e as operacoes deste deste anel sao aquelas apresentadas anteriormente e que sao sim-
plesmente aquelas que estamos (ou deveriamos estar) acostumados.

A partir de agora, o anel de polinomios em uma indeterminada sobre um anel comu-
tativo com unidade A serd denotado por A[z]. Um elemento de Alx] serd denotado por
f(x), ou p(x), ou q(z), etc. O polindémio nulo é o polinomio 0+ 0x + 0z + - - - + 0™ que
serd denotado simplesmente por 0. A unidade de A[z] é o polinémio 1+0z+0z*+- - -+0z"

que ¢é denotado por 1.

Observacao 2.4 Com toda construcao que fizemos acima, fica explicado quem € o x que

aparece no anel de polinomios.

Vamos agora enunciar as definicoes que vimos anteriomente sobre polinomios, mas

usando a nova notagao.

Definigao 2.5 Sejam A um anel comutativo com unidade e p(x) = ag + a1x + axx* +
o tapx™ € Alz], com a, # 0. Cada a; é chamado coeficiente de p(z). O nimero natural
n € chamado grau de p(z). O coeficiente a,, é chamado coeficiente lider de p(z). Quando

o coeficiente lider € 1, o polinomio é dito monico.

Proposigao 2.6 Sejam A um dominio e p(x) = ag + a1x + axr® + -+ + a,a",
q(x) = by + byx + boz® + -+ - + byx™ € Alz] tais que a, #0 e b, #0, i.é, gr(p(z) =n e
gr(q(z) = m. Entdo:

(1) gr(p(z) + q(x)) < max{n,m}, sempre que gr(p(x) + q(x)) # 0.
(i) gr(p(z)q(r)) =m+n = gr(p(r)) + gr(q(z))
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Demonstracao: Faremos somente a prova do item (ii). Como sabemos, p(x)q(z) =

co + 17 + cx?® + - + Cppma™™™, onde

o = apbo
cl = CLle + a1b0

co = agby + a1by + asby

. Cn+m = aOanrm + albn+m71 +-+ anbm + anJrlbmfl +-+ anerflbl + an+mb0

Note que ¢pym = apby € = apb,, # 0, pois A é um dominio. Logo, gr(p(z)q(z)) =
m+n = gr(p(z)) + gr(q(z)). O

2.3 Polinomios e Funcoes Polinomiais

Um erro grave cometido por muitos estudantes da area de ciéncias exatas é pensar que
nao ha diferenga entre os conceitos de polindmio em uma indeterminada sobre um anel
A e fungao polinomial (em uma varidvel) sobre o mesmo anel A. Porém, a construcao
feita acima possibilita entender melhor a diferenca entre tais conceitos.

Sejam A um anel comutativo com unidade e ag,aq,---a, € A elementos quaisquer.
Uma fung¢ao polinomial (em uma varidvel) sobre A é uma fungao f : A — A que associa
a cada x € A um tnico y = ag+a1x+ - - - a,x™ € A. Tal y, por ser tnico, é denotado por
f(z) =ay+aix+---a,z™ € A. Uma fungao polinomial f : A — A ¢ dita identicamente
nula se f(z) = 0 para todo = € A.

Informalmente, podemos imediatamente perceber que polinomio e funcao polinomial
nao sao a mesma coisa, pois em um polindmio o “x”é uma sequéncia especifica em A,
enquanto que o “x”de uma func¢ao polinomial é qualquer elemento de A.

Formalmente, vemos a diferenga de polinomios e funcao polinomial da seguinte forma:
considere o corpo Zs = {0,1} e a fungdo polinomial f : Z; — Z, definida por

f(z) =z + z*. Entao,

FO)=04+02=0e f(I)=1+12=2=0,
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ou seja, f é a fungao polinomial identicamente nula. Mas é claro que pela nossa definigao
de polindmio em uma indeterminada x, o polinémio p(x) = x+12* € Zy[z] nao o polindémio

nulo. Em termos de sequéncias, esse polinomio seria (0,1,1,0,0,-- ).

2.4 Algoritmo da Divisao de Euclides

Em termos técnicos, um algoritmo é uma sequéncia légica, finita e definida de
instrugoes que devem ser seguidas para resolver um problema ou executar uma tarefa.
Em uma linguagem mais simples, um algoritmo nada mais é do que uma receita que
mostra passo a passo os procedimentos necessarios para a resolucao de uma tarefa. Ele
nao responde a pergunta “o que fazer?”, mas sim “como fazer”.

Um algoritmo em matematica muito 1til ¢ o chamado Algoritmo da Divisao de Eu-
clides. Embora ele seja mais abrangente, nés o enunciaremos e provaremos para o caso

de polinémios sobre um corpo.

Teorema 2.7 (Algoritmo da Divisao de Euclides)
Seja K um corpo. Se f(x),g(x) € K[z] com g(x) # 0, entdo existem tunicos q(x),r(z) €

K[z] tais que

onde r(z) =0 ou gr(r(x)) < gr(g(z)).

Demonstragao: Suponha que f(x) = ag+ax+---a,z" e g(x) = by + byx + -+ - byz™,
com gr(g(x)) = m.

Existéncia:

Se f(x) =0, basta tomar ¢(x) = r(x) = 0.

Suponha que f(z) # 0 e que gr(f(z)) =n. Se n < m, tome g(z) =0 e r(zx) = f(x).
Portanto, resta considerar o caso em que n > m.

A idéia é multiplicar g(z) por um polindémio apropriado e subtrair o resultado de f(z)

a fim de conseguirmos um outro polinémio de grau menor que o grau de f(z).
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Multiplicamos g(z) por a,b,'z" ™. Subtraindo este resultado de f(z) obtemos um

outro polinémio fi(z), i.é,

f(x) = anbpla"""g(x) = fi(x).

Como

by, 2" g(x) = (anby,' @) (bo + bz + - b
_ b 1box” m+anb 1b i m+1+ —i—anb 1bm$n m+m

~1 - -1 —m+1
= ayb,, bpz"" " + a,b,, biz" mH a2,

temos que gr(f1(¢)) = gr(f(z) — anbyla™"g(x)) < gr(f ().

Se fi(z) = 0, entao tomamos ¢(z) = a,b,;'z" ™ e r(z) = 0.

Se gr(fi(z)) < gr(g(z)), entdo tomamos ¢(x) = a,b,'z" ™ e r(x) = fi(x).

Se gr(fi(z)) > gr(g(x)), entdo executamos o processo anterior colocando fi(z) no
lugar de f(z). Ou seja, se fi(x) = ¢o+ 12+ -+ - + 2P, com ¢, # 0 e p > m, entdo
multiplicamos g(z) por ¢,b,,!zP~™ e subtraindo este resultado de fi(z) obtendo um outro

polinémio f>(x) dado por
fi(@) = bl ™mg(x) = fol).

Novamente, gr(fz(z)) < gr(fi(z)).
Substituindo fi(z) = f(z) — a,b;,'z" ™g(z) na igualdade anterior obtemos

fo(z) = f(x)—anb, " "g(z) — b 2P " g(x)
= fx) = [anby, a" ™ + by, aP ™ g ().

Se fo(x) = 0, tomemos ¢(z) = a,b;, 'z ™g(x) + ;b laP~™ e r(z) = 0.

Se gr(fa(z)) < gr(g(x)), tomemos q(x) = ayb,la™ ™ + c,b 1aP~™ e r(z) = fo(x).

Se gr(fa(x)) > gr(g(z)), repetimos o processo anterior. Ora, a cada passo o grau do
polinémio f;(x) encontrado diminui estritamente, de modo que apés um nimero finito
de passos (n passos no maximo), obteremos f;(x) = 0, ou gr(f;(z)) < gr(g(x)). Neste

momento tomaremos r(x) = f;(z) e g(x) conforme acima.
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Unicidade:
Suponha que existam ¢, (z), g2(z), r1(x), r2(x) € K[z] tais que f(z) = ¢1(x)g(x)+ri(z)

1
1,2. Entao,

e f(z) = g(2)g(x) + ra(z), onde ri(x) = 0 ou gr(ri(z)) < gr(g(x)), i
q1(2)g(x) +11(2) = ¢2(2)g(2) + r2(x) = r1(2) = ra(2) = [g2(2) — @1 (2)]g(2).

Se ¢1(x) # qa2(x), entdo

gr(ri(z) = ry(2)) = gr((a1(z) = @2(2))g(x) = gr((a:(z) = g2()) + gr(9(x)) = gr(g(2)).

Porém, como gr(r;(x)) < gr(g(x)), temos que gr(ri(z)—re(z)) < max{gr(g(z)), gr(g(x))} =
gr(g(x)), contradigao.
Logo, q1(x) = go(z). Neste caso, claramente também temos r1(x) = ry(x).
Nomenclatura: Na notacao do teorema anterior, f(z) é chamado dividendo, g(x) é

chamado divisor, q(z) é chamado quociente e r(x) é chamado de resto. O

Exemplo 2.8 Considere f(xr) = 1223 + 42° — 8z e g(z) = 4z pertencentes a R[z].
Determine o quociente e o resto da divisao de f(x) por g(x) usando o algoritmo da
dwisao.
Solugao: Note que o gr(f(z)) =3, gr(g(x)) = 1 e os conficientes lideres de f(z) e g(x)
sao, respectivamente, 12 e 4. Pelo algoritmo da divisao temos:
filx) = f(z) — 124712371 g(2) = (1223 + 422 — 8x) — (32?) - 4w = 42? — 8x.
Como gr(fi(z)) > gr(g(x)), vamos repetir o processo anterior.
fo(x) = fi(x) —4-47'2* 1. g(x) = (42 — 8z) — (x) - 4x = —8u.
Como gr(fa(z)) > gr(g(x)), vamos repetir o processo anterior.
fa(@) = falw) = (=8) 471271 g(a) = (=8z) — (=2) - 4z = 0.
Como f3(z) = 0, temos do algoritmo da divisao que q(z) = 3z* +x — 2 e r(x) = 0.

Exemplo 2.9 Considere f(x) = 122° — 1922+ 152 — 3 e g(x) = 32? — x +2 pertencentes
a R[x]. Determine o quociente e o resto da divisio de f(z) por g(z) usando o algoritmo

da divisao.
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Solugao: Note que o gr(f(z)) = 3, gr(g(x)) = 2 e os coeficientes lideres de f(z) e

g(x) sao, respectivamente, 12 e 3. Pelo algoritmo da divisao temos:

filz) = f(z) —12-37 1372 g(x) = (122 — 192% + 152 — 3) — (4z) - (32? —x +2) =
—152% + Tz — 3.

Como gr(fi(z)) > gr(g(x)), vamos repetir o processo anterior.
fo(z) = fi(z) — (—=15)- 3712?72 . g(z) = (1522 + Tz — 3) — (=5) - (32> —x+2) = 22 + 7.
Como gr(fa(x)) < gr(g(x)), temos do algoritmo da divisao que ¢(x) =4z —5 e r(z) =

20+ 7.

Observagao 2.10 O Algoritmo da Divisio de Euclides pode ser aplicado sobre Alx],
onde A é um dominio de integridade, sempre que o coeficiente lider do divisor g(x) é
wmvertivel em A. Em particular, o Algoritmo da Divisao de Fuclides pode ser aplicado

quando o dwisor g(x) é um polinémio monico.

Exemplo 2.11 Considere f(x) = 22° 4+ 62> + Tx — 1 € g(x) = x + 3 pertencentes a
Z|z]. Determine o quociente e o resto da divisio de f(z) por g(z) usando o algoritmo

da divisao.

Solugao: Mesmo que Z nao é corpo, pela observacao anterior, podemos aplicar o
Algoritmo de Euclides, pois g(z) é um polinémio monico em Z[x].
Note que o gr(f(xz)) = 3, gr(g(z)) = 1 e os coeficientes lideres de f(x) e g(x) sao,

respectivamente, 2 e 1. Pelo algoritmo da divisao temos:
filz)=flx)—2- 17" g(z) = (22 + 62 + Te — 1) — 22 - (x + 3) = Te — 1.
Como gr(fi(z)) > gr(g(x)), vamos repetir o processo anterior.
falz) = filz) = (7) - 172> g(z) = (To = 1) = T+ (x4 3) = —22.

Como gr(fa(z)) < gr(g(x)), temos do algoritmo da divisao que g(z) = 22° + 7 e
r(x) = —22.
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Definicao 2.12 Dados um polinomio f(x) = ap + a1 + - - - a,z™ € Alz], onde A é um
anel comutativo com unidade, e um elemento o € A, a substitui¢ao de x por o em f(x)

¢ um elemento de A dado por

fla) =ap+aja+---a,a”.

Se f(a) =0, diremos que a € uma raiz de f(x) em A.

Corolario 2.13 Seja A um dominio de integridade. Se f(z) € Alz] e a € A, entdo o

resto da divisao de f(x) por x —a é f(a). Em particular, o € raiz de f(x) se e somente

se f(z) = (x — ) - q(x), para algum q(x) € Alz].

Demonstracao: Uma vez que x —«a é monico, podemos aplicar o Algoritmo de Euclides
e obteremos polinémios q(z),r(z) € Alz| tais que f(x) = (z — «) - ¢(x) + r(x), onde

r(z) =0 ou gr(r(zx) < 1. Em todo caso, r(x) = a, para algum a € A. Logo,

fla) = (@ —a)-qg(a) +r(a) = a=r(z).
Em particular,

aéraizde f(z) & fla)=0&r(z)=0& f(r) = (v — o) q(x).

Coroldrio 2.14 Seja A um dominio de integridade. Se f(x) € Alx] é um polindmio nao

nulo de grau n entdo o nimero de raizes de f(x) € menor ou igual a n.

Demonstracao: Faremos a demonstracao por indugao sobre n = gr(f(x)). Se gr(f(z)) =
0 entdo f(z) =a, com 0 # a € A, e portanto o nimero de raizes de f(z) é zero.

Suponha agora que o corolario vale para polindmios de grau n — 1. Vamos mostrar
que vale para f(x). Se f(z) nado possui raizes em A, entao o corolario segue. Porém, se
f(z) possui uma raiz a € A entdo, pelo corolario anterior, f(z) = (x — «) - ¢(z), para
algum ¢(z) € Alz]. Como ¢(x) tem grau n — 1, segue da hipétese de indugao que g(z)
tem no maximo n — 1 raizes. Mas toda raiz de g(x) também é uma raiz de f(z). Logo,

f(z) tem no méximo n raizes. O
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Observagao 2.15 Sejam K e L dois corpos tais que K C L. O numero de raizes de um
polinomio f(x) € K[z] pode aumentar se o considerarmos como um polinémio de L|x].
Por exemplo, o polinomio f(z) = x> — 2 € Q[x] ndo possui raizes em Q, possui uma raiz
em R e possui trés raizes em C, a saber,

Oélzl, 042:\?/§<—1+Z£>,043:\3/§(—1—1£)

2 2

Se retirarmos a hip6tese de A ser um dominio de integridade entao o corolério anterior
é falso. Por exemplo, o polinomio de grau 2 f(r) = 2? 4+ 3x + 2 € Zg[z] possui 4 raizes

em Zg. Sao elas 1, 2, 4 e 5.
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